

4th International Workshop of Advances in Simplifying Medical UltraSound (ASMUS)
October 8, 2023

Synthetic Boost: Leveraging Synthetic Data for Enhanced Vision-Language Segmentation in Echocardiography

Rabin Adhikari*, Manish Dhakal*, **Safal Thapaliya***, Kanchan Poudel, Prasiddha Bhandari, Bishesh Khanal

Nepal Applied Mathematics and Informatics Institute for research (NAAMII)

Outline

- Echocardiography and Segmentation Models
- Synthetic Data and Prompt Engineering
- Experiments and Results

Outline

- Echocardiography and Segmentation Models
- Synthetic Data and Prompt Engineering
- Experiments and Results

Echocardiography

- Cheap, portable and gives HD images
- Requires strong segmentation algorithms

Image source: https://heartsense.in/echocardiogram/

How hard is it to accurately segment different parts in an echocardiography?

Image source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799067/

How hard is it to accurately segment different parts in an echocardiography?

Image source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799067/

Existing Segmentation Models

Existing Segmentation Models

- Rely on large amount of annotated data for supervised training
- Lack explainability

- Require retraining when new classes are introduced
- Not resilient to distribution shifts

Vision Language Segmentation Models

Vision Language Segmentation Models

- Extract rich information from image and language prompt pairs
- Aid in accurate and explainable segmentation
- Requires large image-prompt pairs for good finetuning performance

Outline

- Echocardiography and Segmentation Models
- Synthetic Data and Prompt Engineering
- Experiments and Results

Real and synthetic echocardiography

CAMUS [1]

- Real cardiac segmentation dataset
- 2D apical two-chamber and four-chamber views at end-diastole (ED) and end-systole (ES) cycles
- Train-val-test split: 600-400-200

Synthetic Echocardiography [2]

- Synthetic echocardiography images generated using SDMs [3]
- Takes perturbed anatomical masks as conditioning information to denoise the noisy images and generates echocardiographic images
- *Train-val split:* 8000-1000

^[1] Leclerc, S., Smistad, E., Pedrosa, J., Østvik, A., Cervenansky, F., Espinosa, F., ... & Bernard, O. (2019). Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. *IEEE transactions on medical imaging*, 38(9), 2198-2210.

^[2] Stojanovski, D., Hermida, U., Lamata, P., Beqiri, A., & Gomez, A. (2023). Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation. In *International Workshop on Advances in Simplifying Medical Ultrasound* (pp. 34-43). Cham: Springer Nature Switzerland.

We'll create our own prompts.

But we don't have prompts for CAMUS. How to get them?

Prompt Engineering

Following our previous work [1], we created 7 different prompts.

^[1] Poudel, K., Dhakal, M., Bhandari, P., Adhikari, R., Thapaliya, S., & Khanal, B. (2023). Exploring transfer learning in medical image segmentation using visionlanguage models. arXiv preprint arXiv:2308.07706.

Outline

- Echocardiography and Segmentation Models
- Synthetic Data and Prompt Engineering
- Experiments and Results

How does synthetic data help in finetuning?

Synthetic data better than no data.

Quality > Quantity

How does synthetic data help in finetuning?

Pretraining on synthetic

Does training the encoders during finetuning give different results?

Does training the encoders during finetuning give different results?

Future Directions

- Train using both real and synthetic data and describe whether image is real or synthetic in the language prompt.
- Find ways to generate synthetic triplets of image-language-mask at scale without annotated image-mask pairs.

Scan this to know more about our work

Thank You