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also a communication
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Project Composition

BRRREALEEE R > Web Application

Web Application
Display and visualize the tweets labelled by human
and the Machine Learning model. ..,,
\-————"
Tweets

Machine Learning Model

Provide predictions for the topics of individual tweets.

Machine Learning
Model




Web Application

Machine Learning
Model

User Interface

Database




tart Date nd Date

View Data Of ECWRN 1 /09/2021 LL8-0/00/2021

FILTER

Trend of topics Total number of tweets for individual topics
B Covid Stats [ Vaccination Covid Politics [ Humcur [ Lockdown [ Civic Views B Total twest Count in the given range
- Life During Pandarmc - Covid Waves and Vanants - Othisrs
400 covid_stats

VaGcination

300 civic_views

= 250
] covid_politics
< 200
% life_during_pandemic
= 150
humour
others

covid_waves_and_variants

lockdown

[ =]

1,000 2,000 3,000

=
=

Filter by Topic: .

2 Jagdishor Panday on September 18, 2021 Trending Words
TR, Alidd warTe diearerel F falfad Jamens! A=t W daanr R
! HHAH fIavEn 910 A0aHied 9 G g i I Sdgaq a9 @
IYeTE] THIS9 qay |

o | Ih‘lm
covid_politics EDIT - ﬂ e g AR® o 3
HUETAT o
SRR R - ! §
Ty & o
N " HBHOT
& ZETe Fl( T SR ) on September 18, 2021 - -u. g . .,,h
Bifrs a1 g8 et et ) e 2N E"q' 81,
life_during_pandamic EDIT CAE S n iz o ;

NN
= Krishna Gyawali on September 19, 2021

oY= y i L N . T ) LY = T P W T 1 £y




Collection

Annotation

Preprocessing

Web Application

Machine Learning
Model




.

Nepall Language Tweets Labelled and
Processed Tweets

Tweets collection Tweet Tweet

using keywords Annotation Preprocessing




Keywords
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e 8 topics derived from WHO EARS

e / annotators

Topics
Covid Stats
Vaccination

Nepali Language Tweets Labelled and Covid Politics
Processed Tweets Humor
Lockdown

Civic Views
Life During Pandemic
Waves and Variants

Tweets collection Tweet Tweet

using keywords Annotation Preprocessing
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Nepali Language Tweets

Tweets collection Tweet Tweet

using keywords Annotation Preprocessing
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NAT-CTC Dataset

e A total of 12,241 labelled tweets
e 15% Validation Set
e Topics Inter-rater agreement

o Fleiss Kappa score of 0.64
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Machine Learning Model: Architecture

Language
Moael

Output Labels

Classifier




Machine Learning Model: Architecture
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Language Model Choices

e Poor Performance of Nepali Language Models
e Choice narrowed down to Multilingual Models
* mBERT: More Latin Scripts ~104 languages

 MuRIL: More emphasis on Indic Languages ~ 17 languages

Devlin et. al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018
Khanuja et. al. MuRIL: Multilingual Representations for Indian Languages, 2021
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Precision-Recall Curve: MuRIL
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Precision-Recall Curve: mBERT
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MuRIL vs mBERT

AUC F1-Score

COVID Stats 0.97 0.96 0.92 0.91
Vaccination 0.99 0.98 0.974 0.968

COVID Politics 0.77 0.72 0.71 0.67
Humor 0.756 0.71 0.72 0.69
Lockdown 0.986 0.989 0.952 0.95

Civic Views 0.73 0.72 0.702 0.701

Life During Pandemic 0.65 0.57 0.62 0.55
COVID Waves and Variants 0.91 0.88 0.85 0.83




MuRIL > mBERT on Bigger Dataset

Validation AUC
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e Future Enhancements



Future Works

e Analyze the basic sentiments of the people during the epidemic
e Add hierarchical categories
o Determine misinformation

« Recommendation system for doctors and experts
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Models on Bigger Dataset
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Models on Smaller Dataset
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Best Model Architecture

Text Input

l

Preprocessing
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